Abstract

Background: Cardiovascular disease (CVD) is a major global health challenge, with increasing prevalence despite advancements in treatment. Recently, the gut microbiota's role in human metabolism, immunity, and disease processes, including CVD, has gained significant attention.


Objectives: This review seeks to elucidate the relationship between gut microorganisms and the development and progression of CVD.


Method: A comprehensive review was conducted, focusing on the significant microorganisms associated with CVD, the mechanisms through which the gut microbiome influences CVD, and the diagnostic modalities used to detect these microorganisms.


Results: CVD can arise from various infectious and non-infectious agents, with certain microorganisms being implicated in heart failure, atherosclerosis, and other cardiovascular conditions. Dysbiosis, or disruption of the gut microbiota, has been linked to increased inflammation and the development of atherosclerosis. Advanced molecular biology tools, such as PCR and next-generation sequencing, have proven effective in detecting microbial pathogens associated with CVD. The gut microbiome's interaction with the host occurs through various pathways, and disruptions in its composition or metabolites can contribute to CVD risks.


Conclusion: The gut microbiota plays a pivotal role in modulating systemic immune responses and metabolic dysfunctions, contributing to CVD development. Understanding this relationship offers potential therapeutic targets and strategies for preventing and treating CVD. Future research should focus on specific microbial strains, microbiome-mediated metabolites, and personalized interventions to harness the gut microbiota's therapeutic potential.

Keywords:

Cardiovascular disease (CVD), Gut microbiota, Dysbiosis, Atherosclerosis, Inflammation, Microbial pathogens, Diagnostic modalities, Next-generation sequencing (NGS), Metabolites, Therapeutic interventions

References

Benjamin EJ, Virani SS, Callaway CW, et al. Heart Disease and Stroke Statistics-2018 Update: A Report from the American Heart Association [published correction appears in Circulation. 2018 Mar 20;137(12): e493]. Circulation. 2018;137(12): e67-e492. doi:10.1161/CIR.0000000000000558

Muller AM, Fischer A, Katus HA, Kaya Z. Mouse models of autoimmune diseases - autoimmune myocarditis. Curr Pharm Des. 2015;21(18):2498-2512. doi:10.2174/1381612821666150316123711

Fournier PE, Gouriet F, Casalta JP, et al. Blood culture-negative endocarditis: Improving the diagnostic yield using new diagnostic tools. Medicine (Baltimore). 2017;96(47):e8392. doi:10.1097/MD.0000000000008392

Boudebouch N, Sarih M, Chakib A, et al. Blood Culture-Negative Endocarditis, Morocco. Emerg Infect Dis. 2017;23(11):1908-1909. doi:10.3201/eid2311.161066

Brouqui P, Raoult D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev. 2001;14(1):177-207. doi:10.1128/CMR.14.1.177-207.2001

Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis: an assessment of the evidence and need for future research. Circulation. 1997;96(11):4095-4103. doi:10.1161/01.cir.96.11.4095

Mitra, S., Drautz-Moses, D.I., Alhede, M. et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 3, 38 (2015). https://doi.org/10.1186/s40168-015-0100-y

Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Front Microbiol. 2015;6:671. Published 2015 Jun 30. doi:10.3389/fmicb.2015.00671

Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701-718. Published 2018 Mar 30. doi:10.1042/CS20180087

Karbach SH, Schönfelder T, Brandão I, et al. Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. J Am Heart Assoc. 2016;5(9):e003698. Published 2016 Aug 30. doi:10.1161/JAHA.116.003698

Tang WH, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183-1196. doi:10.1161/CIRCRESAHA.117.309715

Yin J, Liao SX, He Y, et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015;4(11):e002699. Published 2015 Nov 23. doi:10.1161/JAHA.115.002699

Fu J, Bonder MJ, Cenit MC, et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res. 2015;117(9):817-824. doi:10.1161/CIRCRESAHA.115.306807

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258-1270. doi:10.1016/j.cell.2012.01.035

Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-249. doi:10.1038/nature11552

Yamashiro K, Tanaka R, Urabe T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke [published correction appears in PLoS One. 2017 Apr 13;12 (4):e0176062]. PLoS One. 2017;12(2):e0171521. Published 2017 Feb 6. doi:10.1371/journal.pone.0171521

Barin JG, Talor MV, Diny NL, et al. Regulation of autoimmune myocarditis by host responses to the microbiome. Exp Mol Pathol. 2017;103(2):141-152. doi:10.1016/j.yexmp.2017.08.003

Tripathi A, Xu ZZ, Xue J, et al. Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems. mSystems. 2019;4(2):e00058-19. Published 2019 Apr 30. doi:10.1128/mSystems.00058-19

Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev. 2019;99(1):893-948. doi:10.1152/physrev.00065.2017

Adamczyk-Sowa M, Medrek A, Madej P, Michlicka W, Dobrakowski P. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. J Immunol Res. 2017;2017:7904821. doi:10.1155/2017/7904821

Tang WH, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183-1196. doi:10.1161/CIRCRESAHA.117.309715

Levy M, Thaiss CA, Zeevi D, et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell. 2015;163(6):1428-1443. doi:10.1016/j.cell.2015.10.048

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-1273. doi:10.1126/science.1223490

Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-15723. doi:10.1073/pnas.0407076101

Gabriel CL, Ferguson JF. Gut Microbiota and Microbial Metabolism in Early Risk of Cardiometabolic Disease. Circ Res. 2023;132(12):1674-1691. doi:10.1161/CIRCRESAHA.123.322055

Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5(1):80. Published 2017 Jul 14. doi:10.1186/s40168-017-0296-0

Schiattarella GG, Sannino A, Esposito G, Perrino C. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med. 2019;29(3):141-147. doi:10.1016/j.tcm.2018.08.003

Serino M, Blasco-Baque V, Nicolas S, Burcelin R. Far from the eyes, close to the heart: dysbiosis of gut microbiota and cardiovascular consequences. Curr Cardiol Rep. 2014;16(11):540. doi:10.1007/s11886-014-0540-1

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi:10.1038/nature08821

Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness [published correction appears in Nature. 2013 Oct 24;502(7472)580]. Nature. 2013;500(7464):585-588. doi:10.1038/nature12480

Bullon P, Cordero MD, Quiles JL, Morillo JM, del Carmen Ramirez-Tortosa M, Battino M. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic Biol Med. 2011;50(10):1336-1343. doi:10.1016/j.freeradbiomed.2011.02.018

Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47(4):333-343. doi:10.1016/j.freeradbiomed.2009.05.00433.

Ramirez-Tortosa MC, Quiles JL, Battino M, et al. Periodontitis is associated with altered plasma fatty acids and cardiovascular risk markers. Nutr Metab Cardiovasc Dis. 2010;20(2):133-139. doi:10.1016/j.numecd.2009.03.003

Kuo LC, Polson AM, Kang T. Associations between periodontal diseases and systemic diseases: a review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public Health. 2008;122(4):417-433. doi:10.1016/j.puhe.2007.07.004

Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491-499. doi:10.1161/CIRCHEARTFAILURE.113.000978

Shi L, Ji Y, Zhao S, et al. Crosstalk between reactive oxygen species and Dynamin-related protein 1 in periodontitis. Free Radic Biol Med. 2021;172:19-32. doi:10.1016/j.freeradbiomed.2021.05.031

Zaja I, Bai X, Liu Y, et al. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun. 2014;453(4):710-721. doi:10.1016/j.bbrc.2014.09.144

Barin JG, Tobias LD, Peterson DA. The microbiome and autoimmune disease: Report from a Noel R. Rose Colloquium. Clin Immunol. 2015;159(2):183-188. doi:10.1016/j.clim.2015.05.009

Barin JG, Čiháková D. Control of inflammatory heart disease by CD4+ T cells. Ann N Y Acad Sci. 2013;1285:80-96. doi:10.1111/nyas.12134

De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84-96. doi:10.1016/j.cell.2013.12.016

Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-195. doi:10.1038/oby.2009.167

Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-371. doi:10.2337/db11-1019

Baban B, Yin L, Qin X, Liu JY, Shi X, Mozaffari MS. The role of GILZ in modulation of adaptive immunity in a murine model of myocardial infarction. Exp Mol Pathol. 2017;102(3):408-414. doi:10.1016/j.yexmp.2017.05.002

McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res. 2011;50(4):331-347. doi:10.1016/j.plipres.2011.04.002

Brouqui P, Raoult D. New insight into the diagnosis of fastidious bacterial endocarditis. FEMS Immunol Med Microbiol. 2006;47(1):1-13. doi:10.1111/j.1574-695X.2006.00054.x

Brinkman CL, Vergidis P, Uhl JR, et al. PCR-electrospray ionization mass spectrometry for direct detection of pathogens and antimicrobial resistance from heart valves in patients with infective endocarditis. J Clin Microbiol. 2013;51(7):2040-2046. doi:10.1128/JCM.00304-13

Hasman H, Saputra D, Sicheritz-Ponten T, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples [published correction appears in J Clin Microbiol. 2014 Aug;52(8):3136]. J Clin Microbiol. 2014;52(1):139-146. doi:10.1128/JCM.02452-13

Cheng J, Hu H, Fang W, et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing. Int J Infect Dis. 2019;83:148-153. doi:10.1016/j.ijid.2019.03.007

Peeters B, Herijgers P, Beuselinck K, et al. Added diagnostic value and impact on antimicrobial therapy of 16S rRNA PCR and amplicon sequencing on resected heart valves in infective endocarditis: a prospective cohort study. Clin Microbiol Infect. 2017;23(11):888.e1-888.e5. doi:10.1016/j.cmi.2017.06.008

Mohanty, A., Singh T, S., Kabi, A., Gupta, P., Gupta, P., & Kumar, P. (2017, November 1). BACTERIOLOGICAL PROFILE AND ANTIBIOTIC SENSITIVITY PATTERN OF HOSPITALACQUIRED SEPTICEMIA IN A TERTIARY CARE HOSPITAL IN NORTH EAST INDIA. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 186. https://doi.org/10.22159/ajpcr.2017.v10i11.20554

How to Cite

Mohanty, A., Singh, P., Kabi, A., Verma, A., & Sah, R. (2023). Role of micro-organism in cardiovascular diseases: a comprehensive review. The Evidence, 1(1), 55–61. https://doi.org/10.61505/evidence.2023.1.1.11

Most read articles by the same author(s)

Loading...