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Evidence in Context
• Cardiovascular diseases (CVDs) are a
leading global cause of death, affecting
economic productivity and life quality. • Gut
microbiota significantly influences metabolism
and CVD development. • Specific
microorganisms are linked to diseases like
endocarditis and atherosclerosis. • Changes
in gut microbiota impact blood lipid
composition and coronary artery disease. •
Advanced PCR and sequencing techniques
enhance the identification of CVD-related
microorganisms.
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Abstract
Background: Cardiovascular disease (CVD) is a major global health
challenge, with increasing prevalence despite advancements in treatment.
Recently, the gut microbiota's role in human metabolism, immunity, and
disease processes, including CVD, has gained significant attention. This
review aims to clarify the connection between gut microorganisms and the
initiation and advancement of cardiovascular disease (CVD).

Methods: A comprehensive review was conducted, focusing on the
significant microorganisms associated with CVD, the mechanisms through
which the gut microbiome influences CVD, and the diagnostic modalities used
to detect these microorganisms.

Results: CVD can arise from various infectious and non-infectious agents,
with certain microorganisms being implicated in heart failure, atherosclerosis,
and other cardiovascular conditions. Dysbiosis, which refers to an imbalance
or disturbance in the gut microbiota, is linked with heightened inflammation
and onset of atherosclerosis. Advanced molecular biology tools, such as PCR
and next-generation sequencing, have proven effective in detecting microbial
pathogens associated with CVD. The gut microbiome's interaction with the
host occurs through various pathways, and disruptions in its composition or
metabolites can contribute to CVD risks.

Conclusion: The gut microbiota has a pivotal part in modulating systemic
immune responses and metabolic dysfunctions, contributing to CVD
development. Understanding this relationship offers potential therapeutic
targets and strategies for preventing and treating CVD. Future research
should focus on specific microbial strains, microbiome-mediated metabolites,
and personalized interventions to harness the gut microbiota's therapeutic
potential.
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Introduction
Cardiovascular disease (CVD) continues to be a substantial global health challenge, accounting for a
significant number of annual deaths worldwide [1]. Despite significant advancements in
cardiovascular treatment, conditions such as heart failure, stroke, myocardial infarction and
myocarditis continue to increase in prevalence. They are one of the leading causes of mortality and
morbidity across the globe. While CVDs are top ranked cause of mortality and morbidity in the
high-income countries, with epidemiological transition in progress, they are also on the rise among
the low and low-middle-income countries, thus making them a global crisis. These diseases, along
with others like peripheral vascular disease impose a substantial burden on public health. This in
turn impacts the quality of life of the population and the country leading to decreased human and
economic productivity.

Rising recognition of the critical role played by the gut microbiota, which is the microbial population
that resides in our gastrointestinal tract, in human metabolism, immunity, and disease processes,
including coronary artery disease (CAD), has taken place over the course of the last 10 years.
There has been a substantial increase in awareness of the potential effect of alterations in the gut
microbiome and how these changes affect the development of cardiovascular disease (CVD) and
cardiometabolic disorders. There has been a significant amount of study conducted on the topic of
how the gut microbiome processes a diet that is high in protein; nevertheless, the relationship
between these microbes and the risk of cardiovascular disorders is still a matter of debate. The
complex ecology of the gut microbiota, in addition to its biochemical impacts and metabolic
activities, has piqued the curiosity of academics as well as specialists in the medical field. A
connection between gut microbes and cardiovascular disease is the subject of this review.

Significant microorganisms associated with
cardiovascular diseases
CVD can arise from various infectious and non-infectious agents, each with its implications [2]. In
cases of endocarditis, where the inner lining of the heart becomes inflamed, a significant proportion
(around 70%) are identified as blood culture-negative endocarditis (BCNE) [3].

BCNE is often observed in patients who have previously received antibiotic treatment [4].
Additionally, microorganisms that have a slow growth rate or reside within cells, such as
Staphylococcus aureus, Streptococcus equi, Streptococcus oralis, and Bartonella quintana, can play
a role in the development of blood culture-negative endocarditis (BCNE) [4,5].

Numerous infectious agents have been identified as potential contributors to atherosclerosis [6].
Remarkably, a study by Mitra et al [7] found that atherosclerotic plaques with symptoms and those
without showed different compositions of the microbiome. Microbial groups linked to the host
microbiome, including Porphyromonadaceae, Bacteroidaceae, Micrococcaceae, and
Streptococcaceae, were more prevalent in asymptomatic plaques [7]. On the other hand,
pathogenic microbial groups such as Neisseriaceae, Thiotrichaceae, and Helicobacteraceae were
more common in symptomatic atherosclerotic plaques [7]. Thus, the role of microorganisms has
been already established in multiple cardiovascular diseases, which reiterates the possible targeting
of them in improving CVD-related health.

Dysbiosis, which refers to the disturbance of the general composition of gut microbiota, has been
correlated with heightened inflammation, a key factor in the progression of atherosclerosis [8].
Recent evidence has also connected alterations in gut microbiota and its metabolites to increased
blood pressure as well as to vascular dysfunction [9,10]. Heart failure is linked to certain types of
microorganisms, including Escherichia coli, Klebsiella pneumoniae, and Streptococcus viridans [11].
A further investigation revealed that individuals suffering from symptomatic stroke and transient
ischemic attack had a modified gut microbiota characterized by a higher abundance of opportunistic
pathogens such as Enterobacter [12].

Furthermore, the gut microbiota can significantly influence blood lipid composition, which in turn
can impact the development of coronary artery disease [13-15].

Staphylococcus aureus-induced myocarditis can lead to sepsis (bacterial infection in the
bloodstream) and the formation of abscesses in the heart [6].
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Mechanisms of gut microbiome induction in
cardiovascular disease
When the microbiota in the gut perform the function of an endocrine organ, they produce bioactive
substances that can influence the physiology of the host. Atherosclerosis is one of the conditions
that has been linked to dysbiosis, which is a term that is used to describe changes in the
microbiome of the gut that are associated with sickness [16]. There is the potential for changes in
the microbiota of the gut to have a considerable impact on the control of the biochemistry and
metabolism of the host. An in-depth comprehension of the interaction among gut microbiota, the
inflammasome, the innate immune system, bile acids, and gut permeability has the potential to
provide valuable insights into preventative measures against cardiovascular disease and illuminate
the involvement of bacteria in the development of autoimmune illnesses [17-22].

Indeed, gut microorganisms play a crucial role in modulating systemic immune responses and
metabolic dysfunctions, particularly in individuals with obesity, and contribute to the development
of atherosclerosis [23,24]. The indigenous microorganisms present in the gastrointestinal system
might function as filters for food components by converting typical nutrients into metabolites.
Decreased microbial diversity in the lower gastrointestinal tract is correlated with higher levels of
leukocytes and high-sensitivity C-reactive protein (hsCRP). In contrast, larger amounts of gut
bacteria have shown a negative association with several markers of mild inflammation, such as
hsCRP and interleukin-6 (IL-6) [24-27].

Extensive research utilizing advanced technologies has provided substantial insights into the impact
of gut bacteria on the development of cardiovascular disease (CVD) [28-30]. Research has shown
that gut bacteria, particularly Escherichia coli, can transform food substances such as L-carnitine
and phosphatidylcholine into trimethylamine (TMA). This TMA is then processed in the liver to
produce trimethylamine-N-oxide (TMAO). This conversion promotes atherosclerosis and
cardiovascular diseases [30-34]. Furthermore, an increased presence of the gut bacterium
Collinsella has been detected in the carotid artery of individuals suffering from symptomatic
atherosclerosis. On the flip side, specific probiotics like Lactobacillus rhamnosus GR-1 have
demonstrated efficacy in managing heart failure in experiments involving mouse models. These
findings underscore the significant involvement of gut microflora in the development of
cardiovascular disease (CVD) [35].

Periodontal pathogens have been identified as contributors to the exacerbation of both systolic and
diastolic arterial pressure in diabetic mice subjected to a high-fat diet. This involvement of
periodontal pathogens plays a role in the development of cardiovascular complications. Moreover,
lipopolysaccharide (LPS) originating from P. gingivalis has been linked to inflammation-induced
cardiovascular disease (CVD) by promoting oxidative stress, as expressed by the rise in the
reactive oxygen species levels, and mitochondrial dysfunction [36,37]. Moreover, an interesting
study conducted with a mouse model has provided insights into how microorganisms can
manipulate pathogenic inflammation within the heart and impact unique innate immune responses
[38,39].

Numerous pathways, including the "trimethylamine (TMA)/trimethylamine N-oxide (TMAO)"
pathway, the "short-chain fatty acids (SCFAs)" pathway, and the "primary and secondary bile acid
(BAs) pathways," are recognized for their interactions with host endocrine hormones [40-42].

Regarding the connection between adaptive immunity and cardiovascular disease (CVD), the
glucocorticoid-induced leucine zipper (GILZ) protein has been identified as having a role in
suppressing immune and inflammatory reactions, which can contribute to the onset of myocardial
infarction (MI). This suppression is linked to decreased levels of Th-17 cells and an increase in anti-
inflammatory cytokine IL-10 positive cells [43]. Gut bacteria express a range of receptors, including
Lipopolysaccharide (LPS) and pattern recognition receptors (PRRs), which are involved in initiating
and regulating the host's immune response [44]. Cytokines such as interferon-γ also participate in
this regulatory process [44].
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Figure 1: Association of Dysbiosis.

“Figure credit: segments of the figure were generated by making use of pictures available from
Servier Medical Art and Pixabay, accessed from Servier and Pixabay, and licensed under a Creative
Commons Attribution3.0unported”

Diagnostic modalities
In the field of microbiology, advanced techniques and molecular biology tools have been crucial for
identifying microorganisms related to heart diseases. Molecular methods such as polymerase chain
reaction (PCR) have demonstrated their effectiveness in directly detecting microbial pathogens
associated with cardiovascular diseases, including infective endocarditis. These methods have
significantly improved our ability to pinpoint the involvement of microorganisms in heart-related
illnesses [45-47]. These molecular tools offer notable advantages over conventional culture-based
methods, especially in detecting pathogenic microorganisms that may be viable but not cultivable
using traditional approaches [48-50].

The rise in research on the gut microbiome can be credited to the advancement of affordable and
efficient next-generation sequencing (NGS) technology, along with the availability of various
"omics" data, including human genomic, metabolomics, and proteomic data. The combination of
NGS technology and breakthroughs in bioinformatics has transformed the microbiome field,
replacing traditional culture-based methods and enabling the analysis of progressively intricate
microbiome characteristics. Nonetheless, certain constraints persist. To illustrate, the utilization of
16S rRNA sequencing may result in a limited perspective on bacteria alone, overlooking other
essential life forms such as fungi, protozoa, and viruses. Although they provide a more
comprehensive, multi-kingdom perspective, metagenomic research is not without limits. A large
fraction of the data, especially the viral data, has no near matches in reference databases, making
it impossible to attribute a specific purpose to it [48].

To advance our understanding and progress toward establishing causality in the field of microbiome
research, it is crucial to build a comprehensive knowledge base that consolidates fragmented
information. Furthermore, we may accelerate our understanding by using advancements like text
mining, natural language processing, taxonomic representations, and standardizing terminology
used in the microbiome research community [49].

Therefore, continued research efforts aimed at improving quality control, methodologies, and
pipelines are imperative for the development of comprehensive models that elucidate the dynamics

Mohanty et al., (2023): Role of microorganism in cardiovascular diseases

The Evi 2023:01(01)4



Of the gut ecosystem of cardiovascular disease on a global scale. These advancements will play a
vital role in comprehending the intricate relationship between the gut microbiome and
cardiovascular health. They provide a foundation for potential therapeutic interventions and
preventive strategies in this field.

Prospects for the future
Current evidence shows a strong correlation of gut microbiome with the incidence of CVD. Research
indicates that the microbiota interacts with the host through various pathways, and disruptions in
the content of gut microbiota may lead to a rise in the incidence of CVD and related pathological
changes. As a result, innovative therapeutic targets and strategies have been developed to leverage
the potential of gut microbiota in preventing and treating CVD.

Considerable work is now being done to investigate the possible uses of bacteria in CVD and other
human illnesses in general. First, to get a better understanding of the roles that individual
microorganisms play in the development of illness, attention is being directed toward identifying
particular strains of germs rather than just the bacterial population as a whole. This will enable us
towards a targeted approach towards the gut microbiome rather than a blanket approach. Second,
as present studies mostly concentrate on microbial composition, future studies may focus more on
examining microbiome-mediated metabolites and their downstream functional implications. Thirdly,
personalized approaches for modifying the microbiota are of utmost importance and are actively
being pursued. This endeavour can be aided by conducting microbiome profiling of individual
patients to identify metabolomic biomarkers.

These ongoing advancements in comprehending the part of the gut microbiome in CVD, along with
the exploration of specific microorganisms, metabolites, and personalized interventions, hold great
promise for the development of effective therapeutic strategies.

Conclusion
Uncovering the complex interactions between different physiological factors that affect gut
microbiota and disease development is essential to developing effective therapeutic interventions
for conditions like hypercholesterolemia and coronary artery disease (CAD) and to gaining a
thorough understanding of the impact of gut microbiota on human health.

Supporting information
None

Ethical Considerations
None

Acknowledgments
None

Mohanty et al., (2023): Role of microorganism in cardiovascular diseases

Blood Culture-Negative Endocarditis (BCNE) is heart lining inflammation linked to prior
antibiotic use and involving microorganisms like Staphylococcus aureus, Streptococcus
species, and Bartonella quintana.

Infectious Agents (e.g., Helicobacter pylori, Cytomegalovirus, Chlamydia pneumoniae)
contribute to atherosclerosis; microbiota variations are observed in symptomatic and
asymptomatic plaque cases.

Gut microbiota imbalance leads to inflammation, hypertension, vascular issues, and
atherosclerosis, with specific microbes (e.g., Escherichia coli) linked to heart failure.

Gut microbiota-generated metabolites (TMAO, SCFAs, secondary bile acids) influence
cardiovascular disease development.

Advanced diagnostic tools (PCR, NGS) outperform culture-based methods in identifying
cardiovascular disease-related microorganisms.
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