
Introduction
Although diagnostic microbiology largely focuses on the laboratory analysis of
infectious diseases, it is increasingly being replaced by clinical microbiology, which
emphasizes the treatment and management of infections through pathogen
characterization. Diagnostic microbiology has always played a critical role in the
management of infectious diseases, outbreak containment, and combating
antimicrobial resistance. In the last couple of years, clinical microbiology has been
blessed with incredible breakthroughs that have immensely upgraded the quality of
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Abstract
Background: Artificial intelligence (AI) is an upcoming field that focuses on
the evolution of intelligent machines which can easily perform labor intensive
tasks with great accuracy. It has the ability to promptly analyze large
amounts of data in a short span of time due to which it has been used for
pathogen identification, and to make predictions regarding culture plate
interpretations in a clinical specimen. This study reviews AI’s impact on
clinical microbiology, focusing on microorganism identification, antimicrobial
resistance detection, drug development, and record management, while
highlighting key challenges.

Methods: A systematic review was conducted until June 1, 2024 by
searching literature from various databases such asPubMed, Scopus, Web of
Science, and manual search using keywords ‘AI and clinical microbiology’, ‘AI
and diagnostic microbiology’, ‘AI and microscopy’, ‘AI and antimicrobial
resistance’. Only the articles focusing on the use of AI in clinical or diagnostic
microbiology were included and others were excluded. As the involvement of
AI in clinical microbiology is a relatively recent and upcoming modality,
majority of the selected articles were published in the last 5 years only.

Results: AI algorithms can be used for pathogen identification, bacterial
growth detection, microscopy, colony counting, antimicrobial susceptibility
testing, and maintenance of electronic records in a clinical microbiology
laboratory. This review focuses on the various AI algorithms that are relevant
for clinical microbiology, some of which have already been used in pilot
studies in many developed countries.

Conclusion: With the increasing number of publications on the use of AI in
clinical microbiology, education and training regarding these technological
advancements has become indispensable.

Keywords: Algorithm, artificial intelligence, clinical microbiology, deep learning,
machine learning, neural networks
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Testing and enhanced patient safety. Artificial intelligence (AI), although in its nascent stage, has
revolutionized our knowledge and potential by its integration into the healthcare world [1].

There is a margin of error associated with manual interpretation of culture plates with non-
consensus between microbiologists, often reported in literature [2-4]. AI through its cutting-edge
digital imaging applications, has systematized certain aspects of interpretive microbiology, such as
increased objectivity, precision, and is time saving. AI can be used for a plethora of diagnostic
microbiology activities, such as slide screening for pathogenic microorganisms, culture plate
interpretations, and antimicrobial susceptibility results, as well as for the analysis of drug resistance
mechanisms [5].

AI algorithms such as machine learning (ML), neural networks, and deep learning techniques are
increasingly being used for analyzing large data sets in diagnostic microbiology.

Machine learning: ML is a branch of AI that is trained on historical data and uses it to read new
data. With the advent of ML, the potential for improvement in quality, cost, and turn-around time of
infectious diseases’ diagnosis is increasingly being recognized [6]. Furthermore, there is an
impending issue of antimicrobial resistance for which the development of newer antibiotics is a slow
and expensive process with a scarcity of drugs in the pipeline. ML facilitated antibiotic discovery has
been an upcoming modality, with AI facilitated innovations expected in the next decade [7]. ML
often has an air of ‘mystery’ to it, giving the notion of an intelligent computer. It can be categorized
as supervised, unsupervised, and reinforced learning [1]. It can be applied to clinical microbiology
at various stages, such as pre analytical, analytical, and post analytical processes for sample
tracking, image acquisition, and workstation operation. These are designed to minimize the human
error that arises from repetitive, monotonous, and labor-intensive tasks, thus, overcoming the data
integrity concerns in diagnostic microbiology [8]. ML has the advantage of rapid and detailed
pattern analysis of data sets, which cannot be achieved using conventional spreadsheets.

Neural networks: These are a subset of ML models and are based on neural networks in the
human brain. It is an intricate network of interconnected neurons that collaborate to handle
complicated tasks. It has many types- feed forward neural network (NN), convolutional neural
network (CNN), and fully convolutional network (FCN). Feedforward NN allows unidirectional
passage of information from input layer to hidden layer to the output layer. Large number of
neurons are present in each layer which perform mathematical operations on the inputs of previous
layer. Convolutional layers are the defining elements of CNN which carry out matrix multiplications
in close proximity. This is adequate for capturing spatial information making them adequately
suitable for image analysis. FCN have an edge in performing segmentation tasks such as
microscopy images. Other NNs include vision transformer, generative adversarial network, and
autoencoder [9].

Deep learning: A branch of AI that emulates how we learn and comprehend certain exercises,
such as pattern recognition and classification of tasks. Through deep convolutional neural networks,
urine sample analysis can be carried out by capturing images similar to the visual cortex region of
the human brain. Deep neural networks can also predict antimicrobial properties from amino acid
sequences [10]. In a study conducted in 2009, researchers have described the use of neural
networks for predicting peptide activity against Pseudomonas aeruginosa [11, 12]. Antimicrobial
resistance prediction has increased the interest and excitement among clinical microbiologists for
inculcating AI in routine microbiology reporting.

These emerging technologies have the requisite potential to re-shape diagnostic microbiology as
rapid microbiology. The development of an algorithm for accurate and precise interpretation of
cultures and smears requires inputs from clinical microbiologists, software developers, AI
specialists, and clinical leads. The United States Food and Drug Administration (FDA) has issued
guidelines for ‘Good Machine Learning Practice for Medical Device Development,’ which provides a
roadmap for AI enabled software for a variety of healthcare needs, including culture plate
interpretations [13].

Intellect and reasoning of clinical microbiologists cannot be replaced by AI, however, combing the
strengths of two can do wonders in augmenting the delivery of accurate results to the patient. In
today’s age and time, it has become imperative to study generative AI coupled with computer
vision for welcoming the ‘golden age’ in clinical microbiology.
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In view of the above, this systematic review includes a brief summary of the AI technologies
coupled with their uses and limitations that can be used for clinical and diagnostic microbiology.

Methods
The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines were
followed. A systematic review was conducted until June 1, 2024 by searching literature from
various databases such as PubMed, Scopus, Web of Science, and manual search using keywords ‘AI
and clinical microbiology’, ‘AI and diagnostic microbiology’, ‘AI and microscopy’, ‘AI and
antimicrobial resistance’. Only the articles focusing on the use of AI in clinical or diagnostic
microbiology were included and others were excluded (Figure 1). As the involvement of AI in
clinical microbiology is a relatively recent and upcoming modality, majority of the selected articles
were published in the last 5 years only.

Figure 1: Flow diagram for study selection as per PRISMA guideline

Uses of AI in Clinical Microbiology

Identification of pathogenic microorganisms

Prominent manufacturers in life science technology have built a deep convolutional neural network
for reproducing images in urine sample analysis, with authors reporting 98% accuracy for the
overall model. The CNN is an AI model that is influenced by mammalian visual cortex. The
convolutional layer detects the abstract features of an image. These can be rotated, shifted, or
squashed. So, if a human can recognize the features, it is likely that CNN can too [10].

AI models can also predict the course of infections through analysis of patient symptoms,
laboratory and other diagnostic tests. These can assist physicians to determine the most effective
treatment modalities for their patients [14].

Genetic mutations associated with infectious diseases can also be identified by AI driven analysis of
large amounts of data. ML works by identifying similarities in the DNA sequences of organisms
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To trace their origins, and groups them according to their genetic sequences [15]. Consideration of
contamination requires delineating whether the unknown organism is related to a previously
characterized organism or is a novel identity. Identification of contamination requires a supervised
approach, and is a focus of future studies [14].

Detection of bacterial growths

At present, the only class II medical device system with FDA clearance is Automated Plate

Assessment System (APAS®) Independence (Clever Culture Systems). Gammel et al, used this
technology to triage Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA)
cultures (with samples collected from the nares). The study confirmed the accuracy of digital image
analysis with a negative predictive value (NPV) of 100%, implying that intervention by a
microbiologist will only be required in cases of significant growths. No growths can be reliably
reported using this system [2].

Glasson et al, used this technology to screen urine cultures, which displayed a sensitivity of 99%
and specificity of 84.5%. Growth was detected on 99.5% of MacConkey agar plates and 99% of
blood agar plates. Growth detection performance varied with the colony forming units (CFU). In

blood agar plates, the sensitivity was 99.9% at 105 CFU, 99.6% at 104 CFU, and 97.3% at 103

CFU. In MacConkey agar plates, the sensitivity was 99.9% at 105 CFU, 99.6% at 104, and 98.65%
at 103 CFU [3]. This technology is particularly useful in urine samples, as they are usually received
in bulk since urinary tract infection is a common infection prevalent in both hospitals and the
community [1].

PhenoMatrix™ (BioMerieux, Craponne, France) that a similar application system which has
published literature on Streptococcus pyogenes and group B Streptococcus [16,17]. The user
assesses the agar plate and decides whether to report the algorithm decision or perform
subsequent testing.

Positive culture findings can be detected through a computational image analysis technique called
Chromogenic media image detection system, which has high sensitivity and specificity. It has
numerous advantages, such as overcoming the manual error that arises due to subjective variation,
and assessing high volumes of samples even without an ample workforce [1].

Interpretation of culture plates using an expert image analysis system can be used as an effective
screening tool for prompt and accurate reading of culture plates. It acts as a better differentiator of
positive cultures from negative cultures. However, accurate assessment of contamination is a
challenging task for AI, and the final decision for reporting rests with the microbiologist [4].

Given the applications described above, there are substantial reasons to expect more from AI. This
will challenge the manufacturers of the media industry as AI requires strict adherence to physical
and chemical conditions. The media was initially developed for a well-trained microbiologist’s eye,
and not for an advanced imaging system. To the best of our knowledge there aren’t any existing
industrial modifications that have been implemented to accommodate AI. This technology urges
that individuals in regulatory positions are eventually bound to work with AI development
specialists. This phenomenal shift will bring advancements in technology, decreasing laboratory
turn-around times aiding in prompt and accurate patient management.

Microscopy

AI can also detect high resolution images from microscopic slides. A study at Beth Israel Deaconess
Medical Centre revealed that AI enhanced microscopes have the potential to aid microbiologists in
analyzing images of bacteria promptly and accurately [18]. Based on the bacterial morphology,
such as cocci in clusters or chains, it can accurately detect Staphylococcus or Streptococcus
respectively. ML algorithms extract knowledge from microscopy images by supervised and
unsupervised learning. It sorts the images into 3 categories, namely, round clusters, round pairs or
chains, and rod-shaped bacteria, with approximately 95% accuracy [8].

AI can also fuel microscopy-based virological research, aiding in the accurate diagnosis of viral
infections. AI-driven algorithms have been applied for detection of virus-specific antibodies, viral
immunosuppression, viral replication, and screening for antiviral targets [19-22]. Deep learning
models such as neural networks have evolved the virus microscopy data interpretation through
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Image acquisition and analysis. Feedforward neural networks, autoencoders, fully convolutional
networks, and vision transformers are some of the artificial neural networks used for biological
image analysis [9].

Routine clinical parasitology involves the labour-intensive task of examining smears for hours,
which often turn negative for parasites such as protozoa [23, 24]. A study by Mathison et al,
describes the detection of protozoa and helminthic ova in trichome stained faecal smears through
deep convolutional neural networks. This study corroborated computer vision application through
precision, accuracy, and limit of detection analysis [23]. A validation set is necessary for
implementing any AI application for clinical and diagnostic use. This has made computer vision
optimal for screening large amounts of data and images (identifying the negative smears), while
human expertise can be utilized for critical thinking and complex pattern recognition (confirmation
of the diagnosis of positive smears) [6, 23].

A study by Racsa et al described the use of CellaVision® (Lund, Sweden) for detecting Plasmodium
and Babesia species in peripheral blood smears. The detection rate was 100% when parasitaemia
was ≥2.5% and 63% when it was <0.1%. This software can also be used for storing images for
training and educational purposes [25]. Having said that, more studies are required on the use of
AI in microscopy before it can overtake the conventional procedures.

Colony counting

Culture plate interpretations require years of training and professional experience, and in spite of
that, microbiologists are prone to making errors while colony counting. Through AI, advances have
been made in visual assessment of images. ML can detect small and mixed colonies with a higher
image resolution and sensitivity than a human eye. Various factors which affect this are- ability to
segregate closely positioned colonies, zooming function for smaller colonies, counting colonies from
all sectors of culture plate, visualization of fluorescent colonies, and differentiation between color
and clear media. Although, considerable progress has been made, ML applications for colony
counting are not completely reliable as of now. Main obstacles are colony forming units (CFUs)
close to the boundary of petri dish, low image resolution, high CFU density, and artifacts on petri
dish’s boundary [8].

Diagnosis of antimicrobial resistance mechanisms and drug development

AI models have also been used for the development of new antimicrobial drugs and treatment
modalities for infectious diseases. One can identify potential antimicrobial targets and the analyze
their effectiveness. Along with this, AI is also being used for analysis of large amounts of data
pertaining to the side effects of these drugs [14]. Wong F et al, have mentioned the development of
a novel antibiotic class active against MRSA using deep learning in their study [26].

AI has the ability to quickly go through large data sets such as those generated from matrix-
assisted laser desorption- ionization/ time of flight mass spectrometry (MALDI-TOF MS). These
include data analysis from primary culture plates, metagenomic microorganism findings, and
bacterial genetic data. Coupling of mass spectra data with ML algorithms can significantly improve
organism and antimicrobial resistance detection through enhanced discrimination between closely
related sub lineages. Use of supervised and unsupervised ML algorithms allows identification and
differentiation of features whose expression is integral for species classification. Feucherolles et al,
have revealed the use of MALDI-TOF MS in combination with ML in their study using the Python
programming language. They have effectively detected antimicrobial resistance in Campylobacter
species with a sensitivity of 92.3% and 81.2% precision [5]. Nguyen et al, have tested ML models
for predicting minimum inhibitory concentrations (MIC) along with the genetic characteristics of
non-typhoidal Salmonella (NTS) with accuracy as high as 95% [27].

CellaVision® (Lund, Sweden) is commonly used for classification of white blood cell morphology.
Apart from this, it can be used for detecting vancomycin resistance in Enterococci and methicillin
resistance in Staphylococci from culture specimens, acid-fast bacilli, malarial parasites, and even
aid in antimicrobial susceptibility testing (AMST). It is a software that is based on computer vision
but requires expert human opinion for the final diagnosis and reporting of the complex image
patterns [28-36].

WASPLab Chromogenic Detection Module (CDM) (Copan, Brescia, Italy) software works by
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Detecting pigmented colonies by a digital camera, followed by segregation into positive and
negative cultures on chromogenic MRSA agar plates. Positive colonies are determined on the basis
of hue, saturation, and value (HSV) score. A study by Faron ML et al, used digital camera for
capturing images at 0 and 16-24 hours. If the HSV score falls into a set threshold, then it is
deemed positive for MRSA. This automated digital analysis system was compared to manual
reading, and exhibited a sensitivity and specificity of 100% and 90.7% respectively [28]. In
another study, CDM was successful in determining vancomycin resistant Enterococci negative
cultures from chromogenic agar plates with a sensitivity of 100% and a specificity of 89.5% [29].

Recently, AI algorithms have been shown to detect aminoglycoside resistance in Escherichia coli
and Staphylococcus aureus [37]. Multiple large-scale laboratories are installing AI for pathogen
identification and AMST. Kiestra TLA system (Becton Dickinson, Franklin Lakes, NJ, USA) and
WASPLab (Copan Diagnostics Inc., Murrieta, CA, USA) are examples of such laboratories [38].

In a diagnostic microbiology laboratory that deals with molecular tests such as proteomics and
genetic sequencing, AI systems can be beneficial not only for storage, but also for interpretation
and analysis of large amounts of complex data that is being generated from these laboratories [6].

Table 1 summarizes AI technologies in clinical microbiology and their diagnostic benefits.

Table 1: Summary of AI technologies that can be used in clinical microbiology

Study
Type of AI
algorithm

Commercial
software/tool/organization

Clinical microbiology task

Mishra A et al [1] Machine learning Unknown
Hospital records (laboratory information
system)

DeYoung B et al [4] Machine learning
Automated Plate Assessment System
(APAS®)

Detection of bacterial growths (MRSA)

Feucherolles et al
[5]

Machine learning
Python programming language (v3.7.6)
& Scikit-learn package (v0.22.1) in
Jupyter NoteBook (v6.0.3)

Antimicrobial drug resistance detection
in Campylobacter species

Sandle T et al [8] Machine learning
Beth Israel Deaconess Medical Center
(Boston, Massachusetts)

Morphology of Staphylococcus,
Streptococcus; colony counting

Petkidis A et al [9]
Deep
convolutional
neural network

Atomwise (San Francisco, California)

Detection of virus-specific antibodies,
viral immunosuppression, viral
replication, and screening for antiviral
targets

Alouani DJ et al
[10]

Convolutional
neural network

Xception and InceptionResNetV2
(BacterioSight platform)

Urine sample analysis

Khaledi A et al [12] Machine learning Support Vector Machine (SVM) classifier
Antimicrobial drug resistance detection
in Pseudomonas aeruginosa

Baker J et al [16]
and

Machine learning PhenoMatrix™
Detection of bacterial growths (Group B
Streptococcus and Streptococcus
pyogenes

Van TT et al [17]

Mathison BA et al
[23]

Deep
convolutional
neural network

Pannoramic 250 Flash III (3DHISTECH,
Budapest, Hungary) viewer software

Protozoa and helminthic ova detection
in trichome stained smears

Racsa LD et al [25]
Deep
convolutional
neural network

CellaVision® DM96 (Lund, Sweden)
Plasmodium and Babesia detection in
peripheral blood smears

Wong F et al [26]
Deep
convolutional
neural network

Chemprop
Novel class of antibiotic discovery
against MRSA

Nguyen et al [27] Machine learning Extreme Gradient Boosting (XGBoost)

Detection of minimum inhibitory
concentrations, and associated
genotypic features of non-typhoidal
Salmonella

Faron ML et al [30,
31]

Machine learning
WASPLab® image analysis software
(Copan, Brescia, Italy)

Detection of methicillin-resistant
Staphylococcus aureus and vancomycin
resistant Enterococci on chromogenic
agar plates

Hospital records

ML is the predominant form of AI that is being used in healthcare. Natural language processing
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(NLP) is a technique of AI that helps in the maintenance of electronic records generated from
laboratory information systems (LIS). This can be used for providing valuable information regarding
clinical signs and symptoms aiding in the diagnosis of infectious diseases. Speech analysis is an
application of NLP that can develop a conversational form of AI translating patient interaction with
the clinician, thereby, helping the laboratory personnel in the analysis of health records and clinical
notes [1]. Some of the AI algorithms that are used for maintenance of health records are Augmedix
(San Francisco, California), CloudMedX (Palo Alto, California), and Regard (Los Angeles, California)
[39-41].

Limitations of AI

Although AI seems beneficial in the foresight, there are certain challenges that should be addressed
at the earliest. Firstly, AI interprets single nucleotide polymorphisms (SNPs) that are phenotypically
distinct as separate organisms. SNPs are variations at a single nucleotide position in the DNA
sequence among individuals of the same species. These variations can lead to phenotypic
differences. Secondly, interpretation of AMST data might become a hurdle when distinct classes
show overlapping mechanisms of action with multidrug resistant mechanisms often co-existing in
the same organism [1]. Thirdly, interpretation of contamination might be an issue as it requires
broad and varied experience with insight into the type of specimen and overall clinical picture of the
case [4]. Fourthly, the algorithm is developed for a designated set of variables, which should
remain fixed and under strict control. For any given AI system, based on the visual detection of
patterns or arrays, changing the lighting and camera angles will develop new images, affecting the
overall performance of the algorithm [1]. This will require algorithm remediation followed by re-
validation activities. These issues can be addressed as they are not insurmountable but require
repeated patterns of learning.

Conclusion
A generation ago, polymerase chain reaction was the latest modality, and today nucleic acid
amplification-based molecular tests are an integral component of a clinical diagnostic laboratory,
especially after the COVID-19 pandemic. Similarly, AI is set to become an indispensable
technological advancement in the field of diagnostic microbiology in the next decade. In the era of
creative diagnostic laboratories being more accessible, clinical microbiologists should be encouraged
to partner with information technology specialists to explore artificial intelligence and develop an in-
depth knowledge of computer vision specific to clinical microbiology.

Future Perspectives and the Road Ahead

In conjunction with automation, AI can pave the way for rapid microbiology, which will be
instrumental in overcoming the error-prone, time-consuming, and slow processes. Having said that,
one should consider some key aspects before adopting the routine use of AI. Firstly, it may not be
possible to bypass the human intelligence of clinical microbiologists; however, reporting can be
enhanced by introducing more precision. Secondly, one should use AI as a strong screening tool
and expert human opinion for verification of the computer algorithm. A bimodal approach of
utilizing both AI (increasing sensitivity by analyzing large data promptly) and expert human opinion
(increasing specificity with objective analysis and complex pattern recognition) should be used for
effective patient outcomes. Attempts should be carried out to welcome these technologies in the
rural and remote areas where there is a dire shortage of laboratory personnel. Addressing the
hurdles with AI is essential before its amalgamation in the routine diagnostic microbiology. AI has
the potential to dramatically reconstruct diagnostic microbiology, and with the present knowledge,
we have only scratched the tip of the iceberg.
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